Affiliation:
1. Sumy State University, Sumy, Ukraine
Abstract
The exact decrease rate of the best approximations of non-integer numbers by
polynomials with integer coefficients of growing degrees is found on a disk
in the complex plane, a cube in $\mathbb{R}^{d}$, and a ball in $\mathbb{R}%
^{d}$. The $\sup $-norm is used in the first two cases, and the norm in $%
L_{p}$, $1\leq p<\infty $, is applied in the third one. Detailed comments
are given (two remarks at the end of the paper).
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference25 articles.
1. Bernstein, S.N. (1952, 1954). Collected works. Vol. I, Vol. II. Acad. Nauk SSSR, Moscow.
2. Kantorovic, L. (1931). Quelques observations sur l’approximation de fonctions au moyen de polynomes a coefficients entiers. Bulletin de l’Academie des Sciences de l’URSS. Classe des sciences mathematiques et na, 9, 1163–1168. https://doi.org/10.3406/barb.1959.67722
3. Trigub, R.M. (1962). Approximation of functions by polynomials with integer coefficients. Izv. Acad. Nauk SSSR, Ser., Mat., 26, 261–280.
4. Trigub, R. & Belinsky, E. (2004). Fourier Analysis and Approximation of Functions. Kluwer-Springer.
5. Trigub, R.M. (2001). On Approximation of Smooth Functions and Constants by Polynomials with Integer and Natural Coefficients. Mat. Zametki, 70, 123–136; English transl.: Math. Notes, 70, 110–122.