Affiliation:
1. Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov'yans'k, Ukraine
Abstract
We study the quasilinear parabolic equation $(|u|^{q-1}u)_t-\Delta_p\,u=0$ in a multidimensional domain $(0,T)\times\Omega$ under the condition $u(t,x)=f(t,x)$ on $(0,T)\times\partial\Omega$, where the boundary function $f$ blows-up at a finite time $T$, i.e., $f(t,x)\rightarrow\infty$ as $t\rightarrow T$. For $p\geqslant q>0$ and the boundary function $f$ with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where $p>q$ to $p=q$ is investigated. A general approach within the method of energy estimates to such problems is described.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference29 articles.
1. Alt, H. W., & Luckhaus, S. (1983). Quasilinear elliptic-parabolic differential equations. Math. Z., 183(3), 311–341. https://doi.org/10.1007/bf01176474
2. Barr´e de Saint-Venant, A.-J.-C. (1855). De la Torsion des Prismes. Imprim´ere Imp´eriale, Paris.
3. Barr´e de Saint-Venant, A.-J.-C. (1856). M´emoire sur la torsion des prismes. M´emoires Divers des Savants ´etrangers, Acad. Sci. Paris, 14, 233-560.
4. Barr´e de Saint-Venant, A.-J.-C. (1856). M´emoire sur la exion des prismes. J. de Math. de Liouville, Ser. II, 1, 89.
5. Galaktionov, V. A., & Shishkov, A. E. (2003). Saint-Venant’s principle in blow-up for higher order quasilinear parabolic equations. Proc. Roy. Soc. Edinburgh. Sect. A, 133(5), 1075–1119. https://doi.org/10.1017/s0308210500002821