Author:
Galaktionov V. A.,Shishkov A. E.
Abstract
We prove localization estimates for general 2mth-order quasilinear parabolic equations with boundary data blowing up in finite time, as t → T−. The analysis is based on energy estimates obtained from a system of functional inequalities expressing a version of Saint-Venant's principle from the theory of elasticity. We consider a special class of parabolic operators including those having fixed orders of algebraic homogenuity p > 0. This class includes the second-order heat equation and linear 2mth-order parabolic equations (p = 1), as well as many other higher-order quasilinear ones with p ≠ 1. Such homogeneous equations can be invariant under a group of scaling transformations, but the corresponding least-localized regional blow-up regimes are not group invariant and exhibit typical exponential singularities ~ e(T−t)−γ → ∞ as t → T−, with the optimal constant γ = 1/[m(p + 1) − 1] > 0. For some particular equations, we study the asymptotic blow-up behaviour described by perturbed first-order Hamilton–Jacobi equations, which shows that general estimates of exponential type are sharp.
Publisher
Cambridge University Press (CUP)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献