Affiliation:
1. Lesya Ukrainka East-European National University, Lutsk, Ukraine
Abstract
We obtained the exact-by-order estimates of some approximate characteristics of classes of the Nikol'skii-Besov type of periodic functions of one variable and many ones in the space \(B_{\infty,1}\) such that the norm in it is not weaker than the \(L_{\infty}\)-norm.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference20 articles.
1. Romanyuk, A. S. (2016). Entropic numbers and widths of the classes \(B^r_{p,\theta}\) of periodic functions of many variables. Ukr. Mat. Zh., 68(10), рр. 1403-1417. Translation in (2017). Ukr. Math. J., 68(10), pp. 1620–1636. https://doi.org/10.1007/s11253-017-1315-9
2. Hembars'kyi, M. V. & Hembars'ka, S. B. (2018). Widths of the classes \(B_{p,\theta}^{\Omega}\) of periodic functions of many variables in the space \(B_{1,1}\). Ukr. Mat. Visn., 15(1), рр. 43-57. Translation in (2018). J. Math. Sci., 235(1), pp. 35–45. https://doi.org/10.1007/s10958-018-4056-x
3. Romanyuk, A. S. & Romanyuk, V. S. (2019). Approximate characteristics of the classes of periodic functions of many variables in the space \(B_{\infty,1}\). Ukr. Mat. Zh., 71(2), рр. 271-282. Translation in (2019). Ukr. Math. J., 71(2), pp. 308–321. https://doi.org/10.1007/s11253-019-01646-3
4. Hembars'kyi, M. V., Hembars'ka, S. B. & K. V. Solich. The best approximations and widths of classes of periodic functions of one variable and many ones in the space \(B_{\infty,1}\). Matem. Stud., (in press).
5. Dinh Dung, Temlyakov, V. N. & Ullrich, T. (2017). Hyperbolic Cross Approximation. АrXiv: 1601.03978 v3 [math. NA] 21 Apr.