1. A. S. Romanyuk, “Estimation of the entropy numbers and Kolmogorov widths for the Nikol’skii–Besov classes of periodic functions of many variables,” Ukr. Mat. Zh., 67, No. 11, 1540–1556 (2015); English translation: Ukr. Math. J., 67, No. 11, 1739–1757 (2016).
2. D. Dung, “Nonlinear approximations using sets of finite cardinality or finite pseudo-dimension,” J. Complexity, 17, No. 2, 467–492 (2001).
3. T. I. Amanov, “Theorems on representation and embedding for the function spaces
S
p
,
θ
r
B
ℝ
n
$$ {S}_{p,\theta}^{(r)}B\left({\mathbb{R}}_n\right) $$
and
S
p
,
θ
r
∗
B
0
≤
xj
≤
2
π
$$ {S}_{p,\theta}^{(r)}\ast B\left(0\le \right) xj\le 2\uppi $$
; j = 1, . . . ,n),” Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).
4. P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).
5. K. Höllig, “Diameters of classes of smooth functions,” in: Quantitative Approximation, Academic Press, New York (1980), pp. 163–176.