Effects of Solutionizing and Aging Alteration on Tensile Behavior of Stir Cast LM4-Si3N4 Composites

Author:

Doddapaneni SrinivasORCID,Shankar Gowri,Sharma Sathyashankara,Kini Achutha,Shettar Manjunath

Abstract

The main concern of this research is to identify the effect of multistage solutionizing and artificial aging behaviour on tensile behavior of LM4 + Si3N4 (1, 2, and 3 wt.%) composites. A two-stage stir casting method was employed to produce composites, which minimized the necessity for a lengthy and high-temperature preheating treatment of reinforcement and resulted in homogeneous reinforcement distribution. Cast composites were subjected to single-stage and multistage solutionizing heat treatment (SSHT and MSHT) followed by aging at 100 and 200°C. Peak hardness of the LM4 and cast composites was noted during artificial aging. With the increase in wt.% of reinforcement, the hardness of the composites increased. Cast composites subjected to MSHT and aging at 100°C displayed maximum hardness when matched to other combinations. Compared to as-cast LM4 hardness (70 VHN), L3SN (with MSHT + aged at 100°C) composite attained 124% higher hardness (157 VHN). UTS values followed a similar trend, compared to as-cast LM4 UTS (149 MPa), L3SN (with MSHT + aged at 100°C) composite attained 54% higher UTS (230 MPa). Major reasons for the improvement in mechanical properties of heat-treated composites are due to the existence of hard Si3N4 particles and the formation of θ'-Al2Cu and θ"-Al3Cu (metastable) phases. From the fracture surface analysis of LM4 and L3SN composite, it was concluded that the type of fracture experienced by LM4 is of ductile nature and that of the composite is of mixed nature.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3