Individual and Combined Effects of Reinforcements on Fractured Surface of Artificially Aged Al6061 Hybrid Composites

Author:

Shettar Manjunath1ORCID,Sharma Sathyashankara1,M C Gowrishankar1,H M Vishwanatha1ORCID,Ranjan Rakesh1,Doddapaneni Srinivas1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Abstract

The present work mainly focuses on a comparative study of the individual and combined effect of reinforcements on tensile strength and fracture surface analysis of Al6061 alloy and its composites during artificial aging. SiC and B4C are the two reinforcements used in the present work for the preparation of Al6061 composites by the stir casting process, and the reinforcement percentage from 2, 4, and 6 wt.% varied. Both Al6061 alloy and its composites are solution-treated at 558 °C/2 h and artificially aged at 100 and 200 °C for different time intervals to achieve peak aging. The results show substantial improvement in ultimate tensile strength during low temperature aging at 100 °C. Approximately 80–110% increase in UTS value is observed in both individual and hybrid composites compared to Al6061 alloy. The mechanism of failure governing the tensile strength for both alloy and its composites is thoroughly analyzed and discussed using a scanning electron microscope. The morphology of crack propagation is also studied to determine the mechanism of failure. Al6061 alloy shows ductile failure due to coarser dimples. Al6061-SiC composites show particle-matrix interface cracking and shear failure. Al6061-B4C composites show elongated dimple rupture mode of failure, whereas Al6061-SiC + B4C hybrid composites fail due to nucleation growth and mixed fracture mode.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3