Machinability Study on AA6061/2 SiC / Graphite Hybrid Nanocomposites Fabricated through Ultrasonic Assisted Stir Casting

Author:

Lagisetti Virinchi KrishnaORCID,A. Prasad Reddy,Chamaiporn Sukjamsri ,P Vamsi Krishna

Abstract

Aluminium-based hybrid metal matrix nanocomposites (AA-HMNCs) have numerous applications due to their higher strength-to-weight ratio and good mechanical and tribological properties. However, the machinability aspect of these materials must be carefully explored before employing them in various engineering applications. The present study involves the fabrication of AA6061/2 wt.% SiC/x wt.% graphite (x= 1, 2, 3) hybrid nanocomposites and subsequently subjecting them to machinability investigation. All the hybrid nanocomposite samples are fabricated through ultrasonic assisted stir casting technique. The effect of machining parameters and graphite content of the sample on cutting force and surface roughness is discussed based on experimental data. Experiments are performed based on the central composite design of response surface methodology, and the corresponding output responses are recorded. ANOVA analysis revealed that the graphite content has the highest authority over surface roughness and cutting force. High cutting speeds accompanied by low feed and depth of cut have resulted in reduced cutting forces and better surface finish. Chip morphology studies have also subsequently indicated better machinability with increased graphite content.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3