Affiliation:
1. Department of Mechanical Engineering, College of Engineering and Technology, Wollega University, Nekemte P.O. Box 395, Ethiopia
2. Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
Abstract
Metal matrix composites (MMCs) epitomize a promising class of resources in modern manufacturing, offering an enhanced strength-to-weight ratio and high-temperature performance which make them ideal for applications demanding over conventional metals. However, their machining presents significant challenges due to their inherent material properties. The conventional machining methods including turning, milling, drilling, shaping, and the grinding of MMCs pose several challenges, facing limitations in terms of sustainability and efficiency. This paper explores the current perspective and prospects of the conventional machining techniques applied to MMCs, emphasizing sustainable manufacturing practices. Key aspects include the challenges posed by MMCs’ inherent heterogeneity, the MMC materials used, the MMC manufacturing process, the cutting constraints employed, tool wear, surface unevenness, surface integrity, and high energy consumption throughout machining. The study also explores promising advancements in tooling materials, cutting parameters’ optimization, innovative machining techniques aimed at minimizing the environmental impact and maximizing material utilization, and the strategies developed to overcome these challenges. The paper concludes by highlighting optimizing tools, and processes, and adopting emerging optimization techniques and opportunities for further research aimed at the industry, allowing it to move towards more efficient, eco-friendly production methods.