Unbalance Failure Recognition Using Recurrent Neural Network

Author:

Mohd Ruslan Muhammad Faridzul Faizal,Hassan Mohd Firdaus

Abstract

Many machine learning models have been created in recent years, which focus on recognising bearings and gearboxes with less attention on detecting unbalance issues. Unbalance is a fundamental issue that frequently occurs in deteriorating machinery, which requires checking prior to significant faults such as bearing and gearbox failures. Unbalance will propagate unless correction happens, causing damage to neighbouring components, such as bearings and mechanical seals. Because recurrent neural networks are well-known for their performance with sequential data, in this study, RNN is proposed to be developed using only two statistical moments known as the crest factor and kurtosis, with the goal of producing an RNN capable of producing better unbalanced fault predictions than existing machine learning models. The results reveal that RNN prediction efficacies are dependent on how the input data is prepared, with separate datasets of unbalanced data producing more accurate predictions than bulk datasets and combined datasets. This study shows that if the dataset is prepared in a specific way, RNN has a stronger prediction capability, and a future study will explore a new parameter to be fused along with present statistical moments to increase RNN’s prediction capability.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3