Affiliation:
1. Department of Computer Engineering, Pai Chai University, Daejeon 35345, Republic of Korea
2. Department of Smart Information Technology Engineering, Kongju National University, Cheonan 31080, Republic of Korea
Abstract
We analyze the comparative performance of predicting the transition from normal to abnormal vibration states, simulating the motor’s condition before a drone crash, by proposing a concatenated vibration prediction model (CVPM) based on recurrent neural network (RNN) techniques. Subsequently, using the proposed CVPM, the prediction performances of six RNN techniques: long short-term memory (LSTM), attention-LSTM (Attn.-LSTM), bidirectional-LSTM (Bi-LSTM), gate recurrent unit (GRU), attention-GRU (Attn.-GRU), and bidirectional-GRU (Bi-GRU), are analyzed comparatively. In order to assess the prediction accuracy of these RNN techniques in predicting concatenated vibrations, both normal and abnormal vibration data are collected from the motors connected to the drone’s propellers. Consequently, a concatenated vibration dataset is generated by combining 50% of normal vibration data with 50% of abnormal vibration data. This dataset is then used to compare and analyze vibration prediction performance and simulation runtime across the six RNN techniques. The goal of this analysis is to comparatively analyze the performances of the six RNN techniques for vibration prediction. According to the simulation results, it is observed that Attn.-LSTM and Attn.-GRU, incorporating the attention mechanism technique to focus on information highly relevant to the prediction target through unidirectional learning, demonstrate the most promising predictive performance among the six RNN techniques. This implies that employing the attention mechanism enhances the concentration of relevant information, resulting in superior predictive accuracy compared to the other RNN techniques.
Funder
Kongju National University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献