Numerical investigations of various aspects of plaque deposition through constricted artery

Author:

Goswami P.,Mandal D. K.,Manna N. K.,Chakrabarti S.

Abstract

The pulsatile blood flow through constricted artery generates fluid mechanical forces on internal layer of artery, endothelium. These fluid mechanical factors affect endothelial lining from keeping artery healthy. In this paper, a series of numerical simulations of modeled bell shaped stenosed artery have been carried out for investigation of fluid mechanical factors of realistic pulsatile flow at the inlet of modeled stenosis with bell shaped geometry. The governing equations for two-dimensional unsteady laminar flow of incompressible fluid are solved by finite volume method followed by SIMPLER algorithm. The fluid mechanical factors, particularly wall pressure, streamline contour, peak wall shear stress, low wall shear stress and oscillatory shear index, having inferences to the arterial disease, are investigated by simulation results of different percentage of restrictions. All these parameters have a noticeable impact for the plaque deposition. The impacts of Reynolds number and Womersley number for both of mild stenosis and severe stenosis on arterial disease, atherosclerosis are also investigated by evaluating fractional flow reverse and oscillatory shear potential.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid Mechanics in Arterial Diseases;Advances in Computational Approaches in Biomechanics;2022

2. Effect of dome size on flow dynamics in saccular aneurysms – A numerical study;Journal of Mechanical Engineering and Sciences;2020-09-30

3. Computational analysis to predict the effect of pre-bifurcation stenosis on the hemodynamics of the internal and external carotid arteries;Journal of Mechanical Engineering and Sciences;2020-09-28

4. Modeling of blood clot removal with aspiration Thrombectomy devices;Journal of Mechanical Engineering and Sciences;2020-03-22

5. Thrombectomy aspiration device geometry optimization for removal of blood clots in cerebral vessels;Journal of Mechanical Engineering and Sciences;2020-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3