Author:
Mazliah M.,Mohamad N.,Ab Maulod H. E.,Jeefferie A. R.,Mohd Abid M. A. A.,Karim K. I.,Mahamood M. A.,Hamdan M. M.
Abstract
A statistical model was developed in this study to describe cure characteristic, rebound resilience and tensile strength of natural rubber/starch composites which was prepared by using a Haake internal mixer. Response surface methodology (RSM) based on central composite centered design (CCD) was employed to statistically evaluate and optimize the conditions for maximum cure characteristic, rebound resilience and tensile strength and study the significance and interaction of carbon black and glycerol on rebound resilience and tensile strength yield. The experimental runs were carried out according to a 22 full factorial design for the two identified design independent variables, namely, carbon black (X1) and glycerol (X2). With the use of the developed quadratic model equation, a maximum rebound resilience 71% was obtained to be a carbon black loading of 50 phr and glycerol loading of 7 %.
Publisher
Universiti Malaysia Pahang Publishing
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献