Evaluation of coastal Antarctic precipitation in LMDz6 global atmospheric model using ground-based radar observations
-
Published:2021-07-11
Issue:2
Volume:67
Page:147-164
-
ISSN:2618-6713
-
Container-title:Arctic and Antarctic Research
-
language:
-
Short-container-title:Problemy Arktiki i Antarktiki
Author:
Lemonnier F.1, Chemison A.2, Krinner G.3, Madeleine J.-B.1, Claud C.1, Genthon C.1
Affiliation:
1. Sorbonne Université, École normale supérieure, PSL Research University, École polytechnique, CNRS, Laboratoire de Météorologie dynamique, LMD/IPSL; Escape Productions 2. Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ – UMR8212 3. Université Grenoble Alpes, CNRS, Institut des Géosciences de l’Environnement
Abstract
In the current context of climate change in the poles, one of the objectives of the APRES3 (Antarctic Precipitation Remote Sensing from Surface and Space) project was to characterize the vertical structure of precipitation in order to better simulate it. Precipitation simulated by models in Antarctica is currently very widespread and it overestimates the data. Sensitivity studies have been conducted using a global climate model and compared to the observations obtained at the Dumont d’Urville coast station, obtained by a Micro Rain Radar (MRR). The LMDz/IPSL general circulation model, with zoomed configuration over Dumont d’Urville, has been considered for this study. A sensitivity study was conducted on the physical and numerical parameters of the LMDz model with the aim of estimating their contribution to the precipitation simulation. Sensitivity experiments revealed that changes in the sedimentation and sublimation parameters do not significantly impact precipitation rate. However, dissipation of the LMDz model, which is a numerical process that dissipates spatially excessive energy and keeps the model stable, impacts precipitation indirectly but very strongly. A suitable adjustment of the dissipation reduces significantly precipitation over Antarctic peripheral area, thus providing a simulated profile in better agreement with the MRR observations.
Publisher
FSBI Arctic and Antarctic Research Institute (FSBI AARI)
Reference25 articles.
1. Church J.A., Clark P.U., Cazenave A., Gregory J.M., Jevrejeva S., Levermann A., Merrifield M. A., Milne G.A., Nerem, R.S., Nunn P. D., Payne A., Pfeffer W.T., Stammer D., Unnikrishnan A.S. Sea-level rise by 2100. Science. 2013, 342: 1445–1445. 2. Shepherd A., Ivins E., Rignot E., Smith B., Van Den Broeke M., Velicogna I., Whitehouse P., Briggs K., Joughin I., Krinner G., Nowicki S., Payne T., Scambos T., Schlegel N., Geruo A., Agosta C., Ahlstrøm A., Babonis G., Barletta V., ... Wouters B. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature. 2018, 558: 219–222. 3. Das I., Bell R.E., Scambos T.A., Wolovick M., Creyts T.T., Studinger M., Frearson N., Nicolas J.P., Lenaerts J.T., van den Broeke M.R. Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geoscience. 2013, 6 (5): 367–371. 4. Palerme C., Kay J., Genthon C., L’Ecuyer T., Wood N., Claud C. How much snow falls on the Antarctic ice sheet? The Cryosphere. 2014, 8: 1577–1587. 5. Souverijns N., Gossart A., Lhermitte S., Gorodetskaya I.V., Grazioli J., Berne A., Duran-Alarcon C., Boudevillain B., Genthon C., Scarchilli C., van Lipzig N.P.M. Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars. The Cryosphere. 2018, 12: 3775–3789. https://doi.org/10.5194/tc-12-3775-2018.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|