Disturbances of electron density in the high latitude upper (F-region) ionosphere induced by X-mode HF pump waves from EISCAT UHF radar observations

Author:

Blagoveshchenskaya N. F.1,Borisova T. D.1,Kalishin A. S.1,Egorov I. M.1,Zagorskiy G. A.1

Affiliation:

1. State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute

Abstract

The paper presents experimental results concerning disturbances of electron density in the high latitude ionosphere F-region, induced by powerfulHF radio waves (pump waves) with extraordinary (X-mode) polarization. The experiments were carried out at the EISCAT/Heating facility at Tromsø, Norway. The EISCAT UHF incoherent scatter radar (ISR), running at 930 MHz, co-located with a heating facility, was used to detect the disturbances of electron density. In the course of the experiments, the X-mode HF pump waves radiated into the F-region towards the magnetic zenith at different pump frequencies and ratios of the pump frequency to the critical frequency of the F2 layer.The effective radiated power was ERP = 360–820 MW. An increase in electron densities was found in a wide altitude range, giving rise to field-aligned ducts with enhanced electron density. The features and behavior of the ducts were investigated. It was revealed that the ducts are formed under quiet background geophysical conditions in a wide altitude range up to the upper altitude limit of EISCAT ISR measurements, when the pump frequencies were both below and above the critical frequency of the F2 layer (fH ≤ foF2 or fH > foF2). A plausible formation mechanism of the ducts is discussed.

Publisher

FSBI Arctic and Antarctic Research Institute (FSBI AARI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3