Enhancement of ionospheric heating effect by chemical release

Author:

Zhao Hai-Sheng,Feng Jie,Xu Zheng-Wen,Liu Ya-Xin,Xue Kun,Wu Jian,Wang Cheng,Xie Shou-Zhi,Peng Huai-Yun

Abstract

AbstractThe ionosphere can be artificially modified by employing ground-based high-power high-frequency electromagnetic waves to irradiate the ionosphere. This modification is achieved through the nonlinear interaction between the electromagnetic waves and the ionospheric plasma, leading to changes in the physical properties and structure of the ionosphere. The degree of artificial modification of the ionosphere is closely related to the heating energy density of high-frequency pump waves. Due to the high density of neutral constituents in the lower ionosphere and the high frequency of electron-neutral collisions, the energy of heating pump waves will be absorbed and attenuated during the penetration of the low ionosphere, seriously affecting the heating effect. This paper proposes a method to reduce the absorption of ionospheric heating pump waves by releasing electron attachment chemicals into low ionosphere to form a large-scale electron density hole. A model for mitigating pump waves absorption based on SF6 release is established, and the absorption at different frequencies is quantitatively calculated. The propagation characteristics of high-frequency signals in ionospheric holes are studied using a three-dimensional ray tracing method, and the results demonstrate that the chemical release method not only reduces the absorption attenuation of heating pump waves but also forms spherical electron density holes, which exhibit a focusing effect on the heating beam and enhance the heating effect. The results are of great significance for understanding the nonlinear interaction between electromagnetic wave and ionospheric plasma and improving the ionospheric heating efficiency.

Funder

National Natural Science Foundation of China

National Key Laboratory Foundation of Electromagnetic Environment

the Stable-Support Scientific Project of Kunming Electro-Magnetic Environment National Observation and Research Station

Academician Zhang Minggao Studio Foundation

the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation

Taishan Scholars Project of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3