Author:
Ciesielski Krzysztof,Pawlikowski Janusz
Abstract
AbstractIn the paper we formulate a Covering Property Axiom, CPAprism, which holds in the iterated perfect set model, and show that it implies the following facts, of which (a) and (b) are the generalizations of results of J. Steprāns.(a) There exists a family ℱ of less than continuummany functions from ℝ to ℝ such that ℝ2 is covered by functions from ℱ, in the sense that for every 〈x, y〉 ∈ ℝ2 there exists an f ∈ ℱ such that either f (x) = y or f (y) = x.(b) For every Borel function f : ℝ → ℝ there exists a family ℱ of less than continuum many “” functions (i.e., differentiable functions with continuous derivatives, where derivative can be infinite) whose graphs cover the graph of f.(c) For every n > 0 and a Dn function f: ℝ → ℝ there exists a family ℱ of less than continuum many Cn functions whose graphs cover the graph of f.We also provide the examples showing that in the above properties the smoothness conditions are the best possible. Parts (b), (c), and the examples are closely related to work of A. Olevskiĭ.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献