Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Aron, R.M., Bernal González, L., Pellegrino, D.M., Seoane Sepúlveda, J.B.: Lineability the Search for Linearity in Mathematics, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)
2. Balcerzak, M., Bartoszewicz, A., Filipczak, M.: Nonseparable spaceability and strong algebrability of sets of continuous singular functions. J. Math. Anal. Appl. 407(2), 263–269 (2013). https://doi.org/10.1016/j.jmaa.2013.05.019
3. Balcerzak, M., Ciesielski, K., Natkaniec, T.: Sierpiński–Zygmund functions that are Darboux, almost continuous, or have a perfect road. Arch. Math. Logic 37(1), 29–35 (1997). https://doi.org/10.1007/s001530050080
4. Bartoszewicz, A., Bienias, M., Filipczak, M., Gła̧b, S.: Strong $${\mathfrak{c}}$$-algebrability of strong Sierpiński–Zygmund, smooth nowhere analytic and other sets of functions. J. Math. Anal. Appl. 412(2), 620–630 (2014). https://doi.org/10.1016/j.jmaa.2013.10.075
5. Bartoszewicz, A., Bienias, M., Gła̧b, S., Natkaniec, T.: Algebraic structures in the sets of surjective functions. J. Math. Anal. Appl. 441(2), 574–585 (2016). https://doi.org/10.1016/j.jmaa.2016.04.013
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Point-set games and functions with the hereditary small oscillation property;Topology and its Applications;2024-09
2. Almost continuous Sierpiński–Zygmund functions under different set-theoretical assumptions;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-11-14
3. Lineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-05-21
4. Lineability of the functions that are Sierpiński–Zygmund, Darboux, but not connectivity;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2020-06-04