Abstract
Let p be a prime number. Let k be a field of characteristic different from p and containing the p-th roots of unity. Let be a finite group. Let L/k be a finite normal extension with Galois group and let c be a 2-cocycle on with coefficients in , where acts trivially on By Emb(L/k, c) we denote the question of the existence of a finite normal extension M of k, such that M contains L, such that [M: L] = p, and such that, denoting by the Galois group of M/k, the extension is given by the class of c.
Publisher
Canadian Mathematical Society
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献