Author:
Chemotti Frank,Mináč Ján,Schultz Andrew,Swallow John
Abstract
Abstract
For a Galois extension
$K/F$
with
$\text {char}(K)\neq 2$
and
$\mathrm {Gal}(K/F) \simeq \mathbb {Z}/2\mathbb {Z}\oplus \mathbb {Z}/2\mathbb {Z}$
, we determine the
$\mathbb {F}_{2}[\mathrm {Gal}(K/F)]$
-module structure of
$K^{\times }/K^{\times 2}$
. Although there are an infinite number of (pairwise nonisomorphic) indecomposable
$\mathbb {F}_{2}[\mathbb {Z}/2\mathbb {Z}\oplus \mathbb {Z}/2\mathbb {Z}]$
-modules, our decomposition includes at most nine indecomposable types. This paper marks the first time that the Galois module structure of power classes of a field has been fully determined when the modular representation theory allows for an infinite number of indecomposable types.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献