Abstract
AbstractGiven
$A\subseteq GL_2(\mathbb {F}_q)$
, we prove that there exist disjoint subsets
$B, C\subseteq A$
such that
$A = B \sqcup C$
and their additive and multiplicative energies satisfying
$$\begin{align*}\max\{\,E_{+}(B),\, E_{\times}(C)\,\}\ll \frac{|A|^3}{M(|A|)}, \end{align*}$$
where
$$ \begin{align*} M(|A|) = \min\Bigg\{\,\frac{q^{4/3}}{|A|^{1/3}(\log|A|)^{2/3}},\, \frac{|A|^{4/5}}{q^{13/5}(\log|A|)^{27/10}}\,\Bigg\}. \end{align*} $$
We also study some related questions on moderate expanders over matrix rings, namely, for
$A, B, C\subseteq GL_2(\mathbb {F}_q)$
, we have
$$\begin{align*}|AB+C|, ~|(A+B)C|\gg q^4,\end{align*}$$
whenever
$|A||B||C|\gg q^{10 + 1/2}$
. These improve earlier results due to Karabulut, Koh, Pham, Shen, and Vinh ([2019], Expanding phenomena over matrix rings,
$Forum Math.$
, 31, 951–970).
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS;Bulletin of the Australian Mathematical Society;2023-10-09