Author:
Karabulut Y. Demi̇roğlu,Koh Doowon,Pham Thang,Shen Chun-Yen,Le Anh Vinh
Abstract
Abstract
In this paper, we study expanding phenomena in the setting of matrix rings.
More precisely, we will prove that
•
if A is a set of
{M_{2}(\mathbb{F}_{q})}
and
{\lvert A\rvert\gg q^{7/2}}
, then
{\lvert A(A+A)\rvert,\lvert A+AA\rvert\gg q^{4}}
,
•
if A is a set of
{\mathrm{SL}_{2}(\mathbb{F}_{q})}
and
{\lvert A\rvert\gg q^{5/2}}
, then
{\lvert A(A+A)\rvert,\lvert A+AA\rvert\gg q^{4}}
.
We also obtain similar results for the cases of
{A(B+C)}
and
{A+BC}
, where
{A,B,C}
are sets in
{M_{2}(\mathbb{F}_{q})}
.
Funder
National Research Foundation of Korea
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Ministry of Science and Technology, Taiwan
Subject
Applied Mathematics,General Mathematics
Reference44 articles.
1. Expansion for the product of matrices in groups;Forum Math.,2019
2. Product growth and mixing in finite groups;Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,2008
3. Group actions and geometric combinatorics in 𝔽qd\mathbb{F}_{q}^{d};Forum Math.,2017
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献