Abstract
Nakayama proposed to classify finite-dimensional algebras R over a field according to how long an exact sequenceof projective and injective R-R-bimodules Xi they allow. He conjectured that if there exists an infinite sequence of this type, then R must be quasi-Frobenius; and he proved this when R is generalized uniserial (17).
Publisher
Canadian Mathematical Society
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On U-codominant dimension;Kyoto Journal of Mathematics;2024-11-01
2. On Noetherian algebras, Schur functors and Hemmer–Nakano dimensions;Representation Theory of the American Mathematical Society;2024-08-06
3. A survey on Igusa–Todorov functions;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-07-27
4. Higher Morita–Tachikawa correspondence;Bulletin of the London Mathematical Society;2024-05-22
5. Rigidity degrees of indecomposable modules over representation-finite self-injective algebras;Journal of Pure and Applied Algebra;2024-03