On Noetherian algebras, Schur functors and Hemmer–Nakano dimensions

Author:

Cruz Tiago

Abstract

Important connections in representation theory arise from resolving a finite-dimensional algebra by an endomorphism algebra of a generator-cogenerator with finite global dimension; for instance, Auslander’s correspondence, classical Schur–Weyl duality and Soergel’s Struktursatz. Here, the module category of the resolution and the module category of the algebra being resolved are linked via an exact functor known as the Schur functor.

In this paper, we investigate how to measure the quality of the connection between module categories of (projective) Noetherian algebras, B B , and module categories of endomorphism algebras of generator-relative cogenerators over B B which are split quasi-hereditary Noetherian algebras. In particular, we are interested in finding, if it exists, the highest degree n n so that the endomorphism algebra of a generator-cogenerator provides an n n -faithful cover, in the sense of Rouquier, of B B . The degree n n is known as the Hemmer–Nakano dimension of the standard modules.

We prove that, in general, the Hemmer–Nakano dimension of standard modules with respect to a Schur functor from a split highest weight category over a field to the module category of a finite-dimensional algebra B B is bounded above by the number of non-isomorphic simple modules of B B .

We establish methods for reducing computations of Hemmer–Nakano dimensions in the integral setup to computations of Hemmer–Nakano dimensions over finite-dimensional algebras, and vice-versa. In addition, we extend the framework to study Hemmer–Nakano dimensions of arbitrary resolving subcategories. In this setup, we find that the relative dominant dimension over (projective) Noetherian algebras is an important tool in the computation of these degrees, extending the previous work of Fang and Koenig. In particular, this theory allows us to derive results for Schur algebras and the BGG category O \mathcal {O} in the integral setup from the finite-dimensional case. More precisely, we use the relative dominant dimension of Schur algebras to completely determine the Hemmer–Nakano dimension of standard modules with respect to Schur functors between module categories of Schur algebras over regular Noetherian rings and module categories of group algebras of symmetric groups over regular Noetherian rings.

We exhibit several structural properties of deformations of the blocks of the Bernstein-Gelfand-Gelfand category O \mathcal {O} establishing an integral version of Soergel’s Struktursatz. We show that deformations of the combinatorial Soergel’s functor have better homological properties than the classical one.

Funder

Studienstiftung des Deutschen Volkes

Publisher

American Mathematical Society (AMS)

Reference56 articles.

1. [AB59] M. Auslander and D. A. Buchsbaum, On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749–765. \PrintDOI{10.2307/2372926}.

2. Finite dimensional Hecke algebras;Ariki, Susumu,2008

3. [Aus71] M. Auslander, Representation dimension of Artin algebras, Queen Mary College Mathematics Notes, Queen Mary College, London, 1971, 179 pp., with the assistance of Bernice Auslander.

4. [BGG76] I. N. Bernshteĭn, I. M. Gel’fand, and S. I. Gel’fand, Category of 𝔤 modules, Funct. Anal. Appl. 10 (1976), no. 2, 87–92. \PrintDOI{10.1007/BF01077933}.

5. Rigidity dimension of algebras;Chen, Hongxing;Math. Proc. Cambridge Philos. Soc.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher Morita–Tachikawa correspondence;Bulletin of the London Mathematical Society;2024-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3