Abstract
Throughout this paper, Z is the ring of integers, ƒ*(t) (ƒ(t)) is an integer monic (co-monic) polynomial in the indeterminate t (i.e., each coefficient of ƒ* (ƒ) is in Z and its highest (lowest) coefficient is 1 (5, p. 121, Definition) and M* (M) is the multiplicative semigroup of all integer monic (co-monic) polynomials ƒ* (ƒ) having no constant term. In (3, Theorem 2), Herstein proved that if R is a division ring with centre C such that1then R = C. In this paper we seek a generalization of Herstein's result to semi-simple rings. We also study the following condition:(1)*Our results are quite complete for a semi-simple ring R in which there exists a bound for the codegree ofƒ (ƒ*) (i.e., the degree of the lowest monomial of ƒ(ƒ*)) appearing in the left-hand side of (1) ((1)*).
Publisher
Canadian Mathematical Society
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Periodic and potent elements;Journal of Algebra and Its Applications;2024-08-14
2. Extension of semiclean rings;Czechoslovak Mathematical Journal;2021-09-20
3. Exponents of skew polynomials over periodic rings;Communications in Algebra;2020-12-17
4. Some new characterizations of periodic rings;Journal of Algebra and Its Applications;2019-11-29
5. Elementary radical classes;International Electronic Journal of Algebra;2018-01-11