Some new characterizations of periodic rings

Author:

Cui Jian1,Danchev Peter2

Affiliation:

1. Department of Mathematics, Anhui Normal University, Wuhu, Anhui 241002, P. R. China

2. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” str., bl. 8, 1113 Sofia, Bulgaria

Abstract

A ring [Formula: see text] is called periodic if, for every [Formula: see text] in [Formula: see text], there exist two distinct positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text]. The paper is devoted to a comprehensive study of the periodicity of arbitrary unital rings. Some new characterizations of periodic rings and their relationship with strongly [Formula: see text]-regular rings are provided as well as, furthermore, an application of the obtained main results to a ∗-version of a periodic ring is being considered. Our theorems somewhat considerably improved on classical results in this direction.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Reference32 articles.

1. STRONGLY $\pi$-REGULAR RINGS

2. M. F. Atiyah, I. G. Macdonald , Introduction to Commutative Algebra, Addison-Wesley Series in Mathematics (Westview Press, 1994), 139 pp.

3. On abelian π-regular rings

4. A commutativity study for periodic rings

5. On commutativity of periodic rings and near-rings

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of $$*$$-(strongly) regular rings in terms of $${\mathcal {G}}$$-projections;Indian Journal of Pure and Applied Mathematics;2024-03-09

2. Nil clean graphs associated with commutative rings;Journal of Algebra and Its Applications;2024-02-15

3. Rings close to periodic with applications to matrix, endomorphism and group rings;Communications in Algebra;2023-11-14

4. $\ast$-Semiclean rings;Turkish Journal of Mathematics;2023-01-01

5. Rings whose elements are sums of m-potents and nilpotents;Communications in Algebra;2022-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3