Author:
Androulakis G.,Odell E.,Schlumprecht Th.,Tomczak-Jaegermann N.
Abstract
AbstractWe study some questions concerning the structure of the set of spreading models of a separable infinite-dimensional Banach space X. In particular we give an example of a reflexive X so that all spreading models of X contain ℓ1 but none of them is isomorphic to ℓ1. We also prove that for any countable set C of spreading models generated by weakly null sequences there is a spreading model generated by a weakly null sequence which dominates each element of C. In certain cases this ensures that X admits, for each α < ω1, a spreading model such that if α < β then is dominated by (and not equivalent to) . Some applications of these ideas are used to give sufficient conditions on a Banach space for the existence of a subspace and an operator defined on the subspace, which is not a compact perturbation of a multiple of the inclusion map.
Publisher
Canadian Mathematical Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献