On the Structure of the Spreading Models of a Banach Space

Author:

Androulakis G.,Odell E.,Schlumprecht Th.,Tomczak-Jaegermann N.

Abstract

AbstractWe study some questions concerning the structure of the set of spreading models of a separable infinite-dimensional Banach space X. In particular we give an example of a reflexive X so that all spreading models of X contain ℓ1 but none of them is isomorphic to ℓ1. We also prove that for any countable set C of spreading models generated by weakly null sequences there is a spreading model generated by a weakly null sequence which dominates each element of C. In certain cases this ensures that X admits, for each α < ω1, a spreading model such that if α < β then is dominated by (and not equivalent to) . Some applications of these ideas are used to give sufficient conditions on a Banach space for the existence of a subspace and an operator defined on the subspace, which is not a compact perturbation of a multiple of the inclusion map.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The complete separation of the two finer asymptotic structures for <;Forum of Mathematics, Sigma;2022

2. On the complete separation of asymptotic structures in Banach spaces;Advances in Mathematics;2020-03

3. The scalar-plus-compact property in spaces without reflexive subspaces;Transactions of the American Mathematical Society;2018-09-13

4. A study of conditional spreading sequences;Journal of Functional Analysis;2017-08

5. The stabilized set of p's in Krivine's theorem can be disconnected;Advances in Mathematics;2015-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3