The complete separation of the two finer asymptotic structures for <

Author:

Argyros Spiros A.,Georgiou Alexandros,Manoussakis Antonis,Motakis Pavlos

Abstract

Abstract For $1\le p <\infty $ , we present a reflexive Banach space $\mathfrak {X}^{(p)}_{\text {awi}}$ , with an unconditional basis, that admits $\ell _p$ as a unique asymptotic model and does not contain any Asymptotic $\ell _p$ subspaces. Freeman et al., Trans. AMS.370 (2018), 6933–6953 have shown that whenever a Banach space not containing $\ell _1$ , in particular a reflexive Banach space, admits $c_0$ as a unique asymptotic model, then it is Asymptotic $c_0$ . These results provide a complete answer to a problem posed by Halbeisen and Odell [Isr. J. Math.139 (2004), 253–291] and also complete a line of inquiry of the relation between specific asymptotic structures in Banach spaces, initiated in a previous paper by the first and fourth authors. For the definition of $\mathfrak {X}^{(p)}_{\text {awi}}$ , we use saturation with asymptotically weakly incomparable constraints, a new method for defining a norm that remains small on a well-founded tree of vectors which penetrates any infinite dimensional closed subspace.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3