Author:
Dijkstra Jan J.,Mill Jan van
Abstract
Abstract. The space now known as complete Erdős space was introduced by Paul Erdős in 1940 as the closed subspace of the Hilbert space ℓ2 consisting of all vectors such that every coordinate is in the convergent sequence ﹛0﹜ ∪ ﹛1/n : n ∈ℕ﹜. In a solution to a problem posed by Lex G. Oversteegen we present simple and useful topological characterizations of . As an application we determine the class of factors of . In another application we determine precisely which of the spaces that can be constructed in the Banach spaces ℓp according to the ‘Erdős method’ are homeomorphic to . A novel application states that if I is a Polishable Fσ-ideal on ω, then I with the Polish topology is homeomorphic to either ℤ, the Cantor set 2ω, ℤ × 2ω, or . This last result answers a question that was asked by Stevo Todorčević.
Publisher
Canadian Mathematical Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献