Abstract
Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Universitat Politecnica de Valencia
Reference15 articles.
1. G. Acosta, L. C. Hoehn and Y. Pacheco Juárez, Homogeneity degree of fans, Topology Appl. 231 (2017), 320-328. https://doi.org/10.1016/j.topol.2017.09.002
2. G. Acosta and Y. Pacheco-Juárez, (frac{1}{3})-homogeneous dendrites, Topology Appl. 219 (2017), 55-77. https://doi.org/10.1016/j.topol.2017.01.003
3. A. V. Arhangel'skii and J. van Mill, Topological homogeneity, Recent progress in general topology III, Amsterdam: Atlantis Press, 2014, pp. 1-68. https://doi.org/10.2991/978-94-6239-024-9_1
4. J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39 pp.
5. W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15, no. 1 (1989), 27-34.