Abstract
In (1) the lattice of all equivalence relations on a set S was studied and many important properties were established. In (2) and (3) the lattice of all geometries on a set S was studied and it was shown to be a universal lattice which shares many properties with the lattice of equivalence relations on S. In this paper we shall give the definition of a partition of type n and investigate the lattice formed by all partitions of type n on a fixed set S. It will be seen that a partition of type one on S can be considered as an equivalence relation on S and similarly a partition of type two on S can be considered as a geometry on S as defined in (2). Thus we shall obtain a unified theory of lattices of equivalence relations, lattices of geometries and partition lattices of higher types.
Publisher
Canadian Mathematical Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献