Complexity of packing common bases in matroids

Author:

Bérczi KristófORCID,Schwarcz Tamás

Abstract

AbstractOne of the most intriguing unsolved questions of matroid optimization is the characterization of the existence of k disjoint common bases of two matroids. The significance of the problem is well-illustrated by the long list of conjectures that can be formulated as special cases, such as Woodall’s conjecture on packing disjoint dijoins in a directed graph, or Rota’s beautiful conjecture on rearrangements of bases. In the present paper we prove that the problem is difficult under the rank oracle model, i.e., we show that there is no algorithm which decides if the common ground set of two matroids can be partitioned into k common bases by using a polynomial number of independence queries. Our complexity result holds even for the very special case when $$k=2$$ k = 2 . Through a series of reductions, we also show that the abstract problem of packing common bases in two matroids includes the NAE-SAT problem and the Perfect Even Factor problem in directed graphs. These results in turn imply that the problem is not only difficult in the independence oracle model but also includes NP-complete special cases already when $$k=2$$ k = 2 , one of the matroids is a partition matroid, while the other matroid is linear and is given by an explicit representation.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rainbow Bases in Matroids;SIAM Journal on Discrete Mathematics;2024-05-07

2. Partitioning into common independent sets via relaxing strongly base orderability;Journal of Combinatorial Theory, Series A;2024-02

3. Matchings under distance constraints II.;Annals of Operations Research;2023-12-07

4. Diverse collections in matroids and graphs;Mathematical Programming;2023-04-15

5. On the complexity of packing rainbow spanning trees;Discrete Mathematics;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3