Abstract
On considère un opérateur U(x) qui transforme l'espace euclidien En en soimême, en général discontinu, et on étudie la convergence d'un processus itératif de la forme xp+1 = xp-μU(x) (μ est une constante numérique positive). Processus de ce type, avec U(x) discontinu, se rencontrent par exemple à l'algorithme de relaxation pour la résolution des systémes d'inéquations [1], [2], de même qu'au calcul des polynômes de la meilleure approximation sur un ensemble fini de points [3].
Publisher
Canadian Mathematical Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献