Approximating fixed points of demicontractive mappings in metric spaces by geodesic averaged perturbation techniques

Author:

Salisu Sani12,Berinde Vasile34,Sriwongsa Songpon1,Kumam Poom1

Affiliation:

1. Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

2. Sule Lamido University Kafin Hausa, Department of Mathematics, Faculty of Natural and Applied Sciences, P.M.B 048, Jigawa, Nigeria

3. Department of Mathematics and Computer Science, North University Center at Baia Mare, Technical University of Cluj-Napoca, Victoriei 76, 430122 Baia Mare, Romania

4. Academy of Romanian Scientists, Ilfov Str. No. 3, 050045 Bucharest, Romania

Abstract

<abstract><p>In this article, we introduce the fundamentals of the theory of demicontractive mappings in metric spaces and expose the key concepts and tools for building a constructive approach to approximating the fixed points of demicontractive mappings in this setting. By using an appropriate geodesic averaged perturbation technique, we obtained strong convergence and $ \Delta $-convergence theorems for a Krasnoselskij-Mann type iterative algorithm to approximate the fixed points of quasi-nonexpansive mappings within the framework of CAT(0) spaces. The main results obtained in this nonlinear setting are natural extensions of the classical results from linear settings (Hilbert and Banach spaces) for both quasi-nonexpansive mappings and demicontractive mappings. We applied our results to solving an equilibrium problem in CAT(0) spaces and showed how we can approximate the equilibrium points by using our fixed point results. In this context we also provided a numerical example in the case of a demicontractive mapping that is not a quasi-nonexpansive mapping and highlighted the convergence pattern of the algorithm in <xref ref-type="table" rid="Table1">Table 1</xref>. It is important to note that the numerical example is set in non-Hilbert CAT(0) spaces.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3