Abstract
AbstractFor each positive integer n, the radix representation of the complex numbers in the base —n + i gives rise to a tiling of the plane. Each tile consists of all the complex numbers representable in the base -n + i with a fixed integer part. We show that the fractal dimension of the boundary of each tile is 2 log λn/log(n2 + 1), where λn is the positive root of λ3 - (2n - 1) λ2 - (n - 1) 2λ - (n2 + 1).
Publisher
Canadian Mathematical Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献