Author:
Ostafe Alina,Shparlinski Igor E.
Abstract
Abstract
We show that in a parametric family of linear recurrence sequences
$a_1(\alpha ) f_1(\alpha )^n + \cdots + a_k(\alpha ) f_k(\alpha )^n$
with the coefficients
$a_i$
and characteristic roots
$f_i$
,
$i=1, \ldots ,k$
, given by rational functions over some number field, for all but a set of elements
$\alpha $
of bounded height in the algebraic closure of
${\mathbb Q}$
, the Skolem problem is solvable, and the existence of a zero in such a sequence can be effectively decided. We also discuss several related questions.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献