On the abc$abc$ conjecture in algebraic number fields

Author:

Scoones Andrew1ORCID

Affiliation:

1. University of Oxford Oxford UK

Abstract

AbstractIn this paper, we prove a weak form of the conjecture generalised to algebraic number fields. Given integers satisfying , Stewart and Yu were able to give an exponential bound in terms of the radical over the integers (Stewart and Yu [Math. Ann. 291 (1991), 225–230], Stewart and Yu [Duke Math. J. 108 (2001), no. 1, 169–181]), whereas Győry was able to give an exponential bound in the algebraic number field case for the projective height in terms of the radical for algebraic numbers (Győry [Acta Arith. 133 (2008), 281–295]). We generalise Stewart and Yu's method to give an improvement on Győry's bound for algebraic integers over the Hilbert Class Field of the initial number field K. Given algebraic integers in a number field K satisfying , we give an upper bound for the logarithm of the projective height in terms of norms of prime ideals dividing , where L is the Hilbert Class Field of K. In many cases, this allows us to give a bound in terms of the modified radical as given by Masser (Proc. Amer. Math. Soc. 130 (2002), no. 11, 3141–3150). Furthermore, by employing a recent bound of Győry (Publ. Math. Debrecen 94 (2019), 507–526) on the solutions of S‐unit equations, our estimates imply the upper bound where is an effectively computable constant. Further, given conditions on the largest prime ideal dividing , we obtain a sub‐exponential bound for in terms of the radical. Independently, as a direct application of his bounds on the solutions of S‐unit equations(Győry ([Publ. Math. Debrecen 94 (2019), 507–526]), Győry (Publ. Math. Debrecen 100 (2022), 499–511) also attains results mentioned above, including the above inequality, but over the base field K, as discussed in Section 6. As a consequence of our results, we will give an application to the effective Skolem–Mahler–Lech problem and give an improvement to a result by Lagarias and Soundararajan (J. Théor. Nombres Bordeaux 23 (2011), no. 1, 209–234) on the XYZ conjecture.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral points on moduli schemes;Journal of Number Theory;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3