Random Forest-Based Prediction of Acute Respiratory Distress Syndrome in Patients Undergoing Cardiac Surgery

Author:

Wang Wei,Li Lina,Gu Hongjun,Chen Yanqing,Zhen Yumei,Dong Zhaorui

Abstract

Background: To develop a machine learning-based model for predicting the risk of acute respiratory distress syndrome (ARDS) after cardiac surgery. Methods: Data were collected from 1011 patients, who underwent cardiac surgery between February 2018 and September 2019. We developed a predictive model on ARDS by using the random forest algorithm of machine learning. The discrimination of the model was then shown by the area under the curve (AUC) of the receiver operating characteristic curve. Internal validation was performed by using a 5-fold cross-validation technique, so as to evaluate and optimize the predictive model. Model visualization was performed to reveal the most influential features during the model output. Results: Of the 1011 patients included in the study, 53 (5.24%) suffered ARDS episodes during the first postoperative week. This random forest distinguished ARDS patients from non-ARDS patients with an AUC of 0.932 (95% CI=0.896-0.968) in the training set and 0.864 (95% CI=0.718-0.997) in the final test set. The top 10 variables in the random forest were cardiopulmonary bypass time, transfusion red blood cell, age, EuroSCORE II score, albumin, hemoglobin, operation time, serum creatinine, diabetes, and type of surgery. Conclusion: Our findings suggest that machine learning algorithm is highly effective in predicting ARDS in patients undergoing cardiac surgery. The successful application of the generated random forest may guide clinical decision-making and aid in improving the long-term prognosis of patients.

Publisher

Forum Multimedia Publishing LLC

Subject

Cardiology and Cardiovascular Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3