Tree-based ensemble machine learning models in the prediction of acute respiratory distress syndrome following cardiac surgery: a multicenter cohort study

Author:

Zhang HangORCID,Qian Dewei,Zhang Xiaomiao,Meng Peize,Huang Weiran,Gu Tongtong,Fan Yongliang,Zhang Yi,Wang Yuchen,Yu Min,Yuan Zhongxiang,Chen Xin,Zhao Qingnan,Ruan Zheng

Abstract

Abstract Background Acute respiratory distress syndrome (ARDS) after cardiac surgery is a severe respiratory complication with high mortality and morbidity. Traditional clinical approaches may lead to under recognition of this heterogeneous syndrome, potentially resulting in diagnosis delay. This study aims to develop and external validate seven machine learning (ML) models, trained on electronic health records data, for predicting ARDS after cardiac surgery. Methods This multicenter, observational cohort study included patients who underwent cardiac surgery in the training and testing cohorts (data from Nanjing First Hospital), as well as those patients who had cardiac surgery in a validation cohort (data from Shanghai General Hospital). The number of important features was determined using the sliding windows sequential forward feature selection method (SWSFS). We developed a set of tree-based ML models, including Decision Tree, GBDT, AdaBoost, XGBoost, LightGBM, Random Forest, and Deep Forest. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and Brier score. The SHapley Additive exPlanation (SHAP) techinque was employed to interpret the ML model. Furthermore, a comparison was made between the ML models and traditional scoring systems. ARDS is defined according to the Berlin definition. Results A total of 1996 patients who had cardiac surgery were included in the study. The top five important features identified by the SWSFS were chronic obstructive pulmonary disease, preoperative albumin, central venous pressure_T4, cardiopulmonary bypass time, and left ventricular ejection fraction. Among the seven ML models, Deep Forest demonstrated the best performance, with an AUC of 0.882 and a Brier score of 0.809 in the validation cohort. Notably, the SHAP values effectively illustrated the contribution of the 13 features attributed to the model output and the individual feature's effect on model prediction. In addition, the ensemble ML models demonstrated better performance than the other six traditional scoring systems. Conclusions Our study identified 13 important features and provided multiple ML models to enhance the risk stratification for ARDS after cardiac surgery. Using these predictors and ML models might provide a basis for early diagnostic and preventive strategies in the perioperative management of ARDS patients.

Funder

Fundamental Research Funds for the Central Universities

Clinical Research Plan of Shanghai Hospital Development Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3