Generation of Bioelectricity Using Molasses as Fuel in Microbial Fuel Cells

Author:

Rojas Flores Segundo,Pérez-Delgado OrlandoORCID,Naveda-Renny NazarioORCID,Benites Santiago M.ORCID,De La Cruz –Noriega MagalyORCID,Delfin Narciso Daniel AlonsoORCID

Abstract

The large amount of molasses that are generated in sugar-processing companies are not always redistributed for commercialization in by-products. Because of this, the present research uses these wastes as fuel in low-cost, lab-scale, single-chamber microbial fuel cells. Zinc and copper electrodes were used as electrodes and 100 mL of molasse in the chamber as fuel, managing to generate current and voltage peaks of 1.73 ± 0.13 mA and 0.953 ± 0.142 V. In monitoring the conductivity of the substrate, a maximum peak of 111.156 ± 8.45 mS/cm was observed, and a slightly acidic pH was observed throughout the monitoring. It was possible to obtain a power density of 5.45 ± 0.31 W/cm2 for a current density of 308.06 mA/cm2, while the yeast count showed a logarithmic curve throughout the monitoring. Finally, the molecular technique identified 100% of the special C. boidinii present in the anodic electrode. This research will give great benefits to sugar companies because they will be able to generate electricity using the molasses that cannot generate by-products.

Publisher

Kaunas University of Technology (KTU)

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3