A Novel Method for Rolling Bearing Fault Diagnosis Based on VMD and SGW

Author:

Toufik Bensana

Abstract

The bearing vibration signal with strong non-stationary properties is generally composed of multiple components making it complicated to extract the characteristic fault features of vibration signals of rolling bearings under the background of strong noise, how to solve this problem effectively is the focus of our research. Therefore, a new scheme based on Variational Mode Decomposition (VMD) and second-generation wavelet (SGW) is proposed in this paper. Firstly, VMD can decompose accurately and adaptively a complex multi-component signal into a set of IMF component with narrow band properties.Secondly, on the basis of kurtosis and cross-correlation analysis, the optimum signal components obtained by the VMD are selected to filter and to reconstruct the analysis signal. Then, (SGW) approach is used to eliminate the strong noise background and enhance the periodic impact in the optimum IMF components. Lastly, the accurate characteristic defect frequency can be obtained by using envelope spectrum of the reconstructing signal. The success of the proposed approach is verified by analysis the vibration signals of bearings with an outer race, an inner race and a rolling element faults, respectively. The results indicate that the scheme is feasible and useful for extracting the bearings fault features.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3