Application of Teager–Kaiser Energy Operator in the Early Fault Diagnosis of Rolling Bearings

Author:

Shi Xiangfu,Zhang Zhen,Xia Zhiling,Li Binhua,Gu XinORCID,Shi TingnaORCID

Abstract

Rolling bearings are key components that support the rotation of motor shafts, operating with a quite high failure rate among all the motor components. Early bearing fault diagnosis has great significance to the operation security of motors. The main contribution of this paper is to illustrate Gaussian white noise in bearing vibration signals seriously masks the weak fault characteristics in the diagnosis based on the Teager–Kaiser energy operator envelope, and to propose improved TKEO taking both accuracy and calculation speed into account. Improved TKEO can attenuate noise in consideration of computational efficiency while preserving information about the possible fault. The proposed method can be characterized as follows: a series of band-pass filters were set up to extract several component signals from the original vibration signals; then a denoised target signal including fault information was reconstructed by weighted summation of these component signals; finally, the Fourier spectrum of TKEO energy of the resulting target signal was used for bearing fault diagnosis. The improved TKEO was applied to a vibration signal dataset of run-to-failure rolling bearings and compared with two advanced diagnosis methods. The experimental results verify the effectiveness and superiority of the proposed method in early bearing fault detection.

Funder

Science and Technology Project of Zhejiang Energy Group

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3