Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning

Author:

Paterova Tereza,Prauzek Michal

Abstract

This article focuses on applying a deep learning approach to predict daily total solar energy for the next day by a neural network. Predicting future solar irradiance is an important topic in the renewable energy generation field to improve the performance and stability of the system. The forecast is used as a support parameter to control the operation duty-cycle, data collection or communication activities at energy-independent energy harvesting embedded devices. The prediction is based on previous hourly-measured atmospheric pressure values. For prediction, a back-propagation algorithm in combination with deep learning methods is used for multilayer network training. The ability of the proposed system to estimate the daily solar energy is compared to the support vector regression model and to the evolutionary-fuzzy prediction scheme presented in previous research studies. It is concluded that the presented neural network approach gave satisfying predictions in early spring, autumn, and winter. In a particular setting, the proposed solution provides better results than a model using the support vector regression method (e.g., the MAPE value of the proposed algorithm is 0.032 less than the MAPE value of support vector regression method). The time and computational complexity for neural network training is considerable, and therefore it was assumed to train the network on an external computer or a cloud, where only the network parameters have been obtained and transferred to the embedded devices.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3