Low-Carbon Economic Multi-Objective Dispatch of an Integrated Energy System Based on GAPSO

Author:

Qin Minglei,Lu Anjie,Huang Yu

Abstract

In recent years, several countries have proposed targets for carbon neutrality in energy, and the transformation of energy systems has become a research hotspot. As a system capable of coupling multi-energy, achieving high penetrations of renewable energy, and improving energy efficiency, the integrated energy system will take on more responsibility under the carbon neutrality target. This paper uses GAPSO (which combines genetic algorithm with particle swarm optimisation algorithm, has a faster iteration speed, and avoids local optimisation) to solve the Pareto frontier set considering the system operation costs and carbon emission. The system operation costs are described using Latin hypercube sampling (LHS) to predict the stochastic output of the renewable energy source and a penalty function based on the predicted mean vote (PMV) model to describe the thermal comfort of the user, which is solved using the genetic algorithm (GA) algorithm. The carbon emission is calculated using the carbon accounting method.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3