A New Approach for Missing Data Imputation in Big Data Interface

Author:

Wang Chunzhi,Shakhovska Nataliya,Sachenko Anatoliy,Komar Myroslav

Abstract

The three-stage approach for missing data imputation in Big data interface is proposed in the paper. The first stage includes designing the Big data model in the task of missing data recovery, which enables to process the structured and semistructured data. The next stage is developing the method of missing data recovery based on functional dependencies and association rules. The estimating the algorithm complexity for missing data recovery is provided at the last stage. The proposed method of missing data recovery creates additional data values using a based domain and functional dependencies and adds these values in available training data. The performing the analysis of data different types is possible too. The correctness of the imputed values is verified on the classifier built on the original dataset. The proposed method performs in 12% better than the EM and RF methods for 30% missing data and enables the parallel execution in distributed databases. The acceleration for m=41 attributes is larger in 12.5 times for 20 servers (processors) comparing with the non-parallel modeю

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3