Missing Data Imputation Using Socio-hawk Optimization-based Deep Neural Network

Author:

Ghongade Trupti G.1ORCID,Khobragade R. N.2ORCID

Affiliation:

1. CSE, SGBAU, Sant Gadge Baba Amravati University, Amravati, Maharashtra 444606, India

2. Computer Science & Engineering, SGBAU, Amravati, Maharashtra 444606, India

Abstract

Missing data remain the common issue experienced in the real-world environment, which leads to deviation in data analysis and mining. Therefore, in order to lessen the consequences of missing data caused by human mistake, missing data imputation must be used in data processing. The traditional imputation model fails to satisfy the evaluation requirement due to its poor stability and low accuracy. Further, these models compromise the imputation accuracy of the increasing number of missing information. Hence, in this research, an optimized missing data imputation model is proposed using the Socio-hawk optimization Deep Neural Network (DNN). In this research, the DNN extracts the important features from the data, in which the missing data are estimated with an arbitrary missing pattern. It is stated that whenever the hyperparameters are tuned properly, the DNN’s performance is improved. The key here is the efficient training of DNN using the suggested Socio-hawk optimization, which improves the imputation model’s accuracy. To determine how well the suggested imputation model imputes missing data, it is compared to other methods. As a result, the paper’s primary contribution is to effectively train DNN using the suggested Socio-hawk optimization that reduces the error rate of the imputation model. The experimental evaluation shows that the proposed missing data imputation model attains a high performance at 90%, which provides 1.0595, 1.9919, and 0.9421 of MAE, MSE, and MAPE.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3