Modified Block Compressed Sensing for Extraction of Fetal Electrocardiogram from Mother Electrocardiogram Using Block Compressed Sensing Based Guided FOCUSS and FAST-Independent Component

Author:

Awan Muhammad Tayyib,Amir Muhammad,Maqsood Sarmad,Yousufi Musyyab,Abdullah Suheel,IRFAN MUHAMMAD

Abstract

Fetal ECG extraction from abdominal ECG is critical task for telemonitoring of fetus which require lot of understanding to the subject. Conventional source separation methods are not efficient enough to separate FECG from huge multichannel ECG. Thus use of compression technique is needed to compress and reconstruct ECG signal without any significant losses in quality of signal. Compressed sensing shows promising results for such tasks. However, current compressed sensing theory is not so far that successful due to the non-sparsity and strong noise contamination present in ECG signal. The proposed work explores the concept of block compressed sensing to reconstruct non-sparse FECG signal using GFOCUSS algorithm. The main objective of this paper is not only to successfully reconstruct the ECG signal but to efficiently separate FECG from abdominal ECG. The proposed algorithm is explained in very extensive manner for all experiments. The key feature of proposed method is, that it doesn’t affect the interdependence relation between multichannel ECG. The useof walsh sensing matrix made it possible to achieve high compression ratio. Experimental results shows that even at very high compression ratio, successful FECG reconstruction from raw ECG is possible. These results are validated using PSNR, SINR, and MSE. This shows the framework, compared to other algorithms such as current blocking CS algorithms, rackness CS algorithm and wavelet algorithms, can greatly reduce code execution time during data compression stage and achieve better reconstruction in terms of MSE, PSNR and SINR.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3