A Prioritization Approach for Regression Test Cases Based on a Revised Genetic Algorithm

Author:

Alrawashdeh Thamer,ElQirem Fuad,Althunibat Ahmad,Alsoub Roba

Abstract

The regression testing is a software-based testing approach executed to verify that changes made to the softwaredo not affect the existing functionality of the product. On account of the constraints of time and cost, it isimpractical to re-execute all the test cases for software whenever a change occurs. In order to overcome sucha problem in the selection of regression test cases, a prioritization technique should be employed. On the basisof some predefined criterion, the prioritization techniques create an execution schedule for the test cases, sothe higher priority test cases can be performed earlier than the lower priority test cases in order to improvethe efficiency of the software testing. Many prioritization criteria for regression test cases have been proposedin software testing literature; however, most of such techniques are code-based. Keeping in view this fact, thisresearch work has proposed a prioritization approach for regression test cases generated from software specificationswhich are based on the criterion of the Average Percentage Transition Coverage (APTC) by using arevised genetic algorithm. This criterion evaluates the rate of transitions coverage by incorporating knowledgeabout the significance of transitions between activates in the form of weights. APTC has been used as a fitnessevaluation function in a genetic algorithm to measure the effectiveness of a test cases sequence. Moreover, inorder to improve the coverage percentage, the proposed approach has revised the genetic algorithm by solvingthe problem of the optimal local solution. The experimental results show that the proposed approach demonstratesa good coverage performance with less execution time as compared to the standard genetic algorithmand some other prioritization techniques.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Ambiguities in Requirement Documents Written in Arabic Using Machine Learning Algorithms;International Journal of Cloud Applications and Computing;2024-02-26

2. Arabic User Requirements Classification Using Machine Learning;2023 International Conference on Information Technology (ICIT);2023-08-09

3. Classification of Arabic Software Requirements Using Machine Learning Techniques;2023 International Conference on Information Technology (ICIT);2023-08-09

4. A Systematic Literature Review on Test Case Prioritization and Regression Test Selection;2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA);2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3