Detecting Ambiguities in Requirement Documents Written in Arabic Using Machine Learning Algorithms
Author:
Affiliation:
1. Al-Zaytoonah University of Jordan, Jordan
2. INTI International University, Malaysia
3. Jadara University, Jordan
4. Applied Science Research Center, Applied Science Private University, Jordan
Abstract
The identification of ambiguities in Arabic requirement documents plays a crucial role in requirements engineering. This is because the quality of requirements directly impacts the overall success of software development projects. Traditionally, engineers have used manual methods to evaluate requirement quality, leading to a time-consuming and subjective process that is prone to errors. This study explores the use of machine learning algorithms to automate the assessment of requirements expressed in natural language. The study aims to compare various machine learning algorithms according to their abilities in classifying requirements written in Arabic as decision tree. The findings reveal that random forest outperformed all stemmers, achieving an accuracy of 0.95 without employing a stemmer, 0.99 with the ISRI stemmer, and 0.97 with the Arabic light stemmer. These results highlight the robustness and practicality of the random forest algorithm.
Publisher
IGI Global
Reference47 articles.
1. Moth optimisation algorithm with local search for the permutation flow shop scheduling problem
2. Virtual digital currency as a method for funding terrorism.;A.Adaileh;Al-Zaytoonah University of Jordan Journal for Legal Studies,2020
3. Using the AraBERT Model for Customer Satisfaction Classification of Telecom Sectors in Saudi Arabia
4. A Prioritization Approach for Regression Test Cases Based on a Revised Genetic Algorithm
5. فاعلية تطبيقات الذكاء الاصطناعي في تنمية الوعي الفونيمي في مقرر اللغة الإنجليزية لدى تلميذات الصف السادس الابتدائي
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3