WMFP-Outlier: An Efficient Maximal Frequent-Pattern-Based Outlier Detection Approach for Weighted Data Streams

Author:

Cai Saihua,Li Qian,Li Sicong,Yuan Gang,Sun Ruizhi

Abstract

Since outliers are the major factors that affect accuracy in data science, many outlier detection approaches have been proposed for effectively identifying the implicit outliers from static datasets, thereby improving the reliability of the data. In recent years, data streams have been the main form of data, and the data elements in a data stream are not always of equal importance. However, the existing outlier detection approaches do not consider the weight conditions; hence, these methods are not suitable for processing weighted data streams. In addition, the traditional pattern-based outlier detection approaches incur a high time cost in the outlier detection phase. Aiming at overcoming these problems, this paper proposes a two-phase pattern-based outlier detection approach, namely, WMFP-Outlier, for effectively detecting the implicit outliers from a weighted data stream, in which the maximal frequent patterns are used instead of the frequent patterns to accelerate the process of outlier detection. In the process of maximal frequent-pattern mining, the anti-monotonicity property and MFP-array structure are used to accelerate the mining operation. In the process of outlier detection, three deviation indices are designed for measuring the degree of abnormality of each transaction, and the transactions with the highest degrees of abnormality are judged as outliers. Last, several experimental studies are conducted on a synthetic dataset to evaluate the performance of the proposed WMFP-Outlier approach. The results demonstrate that the accuracy of the WMFP-Outlier approach is higher compared to the existing pattern-based outlier detection approaches, and the time cost of the outlier detection phase of WMFP-Outlier is lower than those of the other four compared pattern-based outlier detection approaches.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3